Part Number Hot Search : 
10112 33ATH M74HC P12N60 E2520 MC33151 78L08 25VF08
Product Description
Full Text Search
 

To Download BUH100G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? semiconductor components industries, llc, 2010 april, 2010 ? rev. 5 1 publication order number: buh100/d BUH100G switchmode  npn silicon planar power transistor the BUH100G has an application specific state ? of ? art die designed for use in 100 watts halogen electronic transformers. this power transistor is specifically designed to sustain the large inrush current during either the startup conditions or under a short circuit across the load. features ? improved efficiency due to the low base drive requirements: high and flat dc current gain h fe fast switching ? robustness thanks to the technology developed to manufacture this device ? on semiconductor six sigma philosophy provides tight and reproducible parametric distributions ? these devices are pb ? free and are rohs compliant* maximum ratings rating symbol value unit collector ? emitter sustaining voltage v ceo 400 vdc collector ? base breakdown voltage v cbo 700 vdc collector ? emitter breakdown voltage v ces 700 vdc emitter ? base voltage v ebo 10 vdc collector current ? continuous ? peak (note 1) i c i cm 10 20 adc base current ? continuous ? peak (note 1) i b i bm 4 10 adc total device dissipation @ t c = 25  c derate above 25 c p d 100 0.8 w w/  c operating and storage temperature t j , t stg ? 60 to 150  c thermal characteristics characteristics symbol max unit thermal resistance, junction ? to ? case r  jc 1.25  c/w thermal resistance, junction ? to ? ambient r  ja 62.5  c/w maximum lead temperature for soldering purposes1/8 from case for 5 seconds t l 260  c stresses exceeding maximum ratings may damage the device. maximum ratings are stress ratings only. functional operation above the recommended operating conditions is not implied. extended exposure to stresses above the recommended operating conditions may affect device reliability. 1. pulse test: pulse width = 5 ms, duty cycle 10%. *for additional information on our pb ? free strategy and soldering details, please download the on semiconductor soldering and mounting techniques reference manual, solderrm/d. power transistors 10 amperes 700 volts ? 100 watts to ? 220ab case 221a ? 09 style 1 1 http://onsemi.com marking diagram a = assembly location y = year ww = work week g = pb ? free package 2 3 device package shipping ordering information BUH100G to ? 220ab (pb ? free) 50 units / rail BUH100G ay ww
BUH100G http://onsemi.com 2 electrical characteristics (t c = 25 c unless otherwise noted) ??????????????????? ??????????????????? characteristic ????? ????? ??? ??? ???? ???? ??? ??? ???? ???? ????????????????????????????????? ????????????????????????????????? ??????????????????? ??????????????????? collector ? emitter sustaining voltage (i c = 100 ma, l = 25 mh) ????? ????? ??? ??? ???? ???? ??? ??? ???? ???? ??????????????????? ??????????????????? ??????????????????? ? base breakdown voltage (i cbo = 1 ma) ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ???? ??????????????????? ??????????????????? ??????????????????? ? base breakdown voltage (i ebo = 1 ma) ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ???? ??????????????????? ??????????????????? ????? ????? ??? ??? ???? ???? ??? ??? ???? ????  adc ??????????????? ??????????????? ??????????????? ????? ????? ????? c @ t c = 125 c ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ????  adc ??????????????? ??????????????? ??????????????? ????? ????? ????? c @ t c = 125 c ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ????  adc ??????????????????? ??????????????????? ? cutoff current (v eb = 9 vdc, i c = 0) ????? ????? ??? ??? ???? ???? ??? ??? ???? ????  adc ????????????????????????????????? ????????????????????????????????? on characteristics ??????????????? ??????????????? ??????????????? base ? emitter saturation voltage (i c = 5 adc, i b = 1 adc) ????? ????? ????? c ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ???? ??????????????? ??????????????? ? emitter saturation voltage (i c = 5 adc, i b = 1 adc) ????? ????? c @ t c = 125 c ????? ????? ????? ????? ??? ??? ???? ???? ??? ??? ???? ???? ??????????????? ??????????????? ??????????????? ????? ????? ????? c @ t c = 125 c ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ???? ??????????????? ??????????????? ??????????????? ????? ????? ????? c @ t c = 125 c ????? ????? ????? ????? ????? ????? ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ???? ??????????????? ??????????????? ??????????????? ????? ????? ????? c @ t c = 125 c ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ???? ??????????????? ??????????????? ??????????????? ????? ????? ????? c @ t c = 125 c ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ???? ??????????????? ??????????????? ??????????????? ????? ????? ????? c @ t c = 125 c ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ???? ????????????????????????????????? ????????????????????????????????? dynamic saturation voltage ???????? ???????? ???????? ???????? ???????? dynamic saturation voltage: determined 3  s after rising i b1 reaches 90% of final i b1 (see figure 19) ???????? ???????? ???????? ????? ????? c ????? ????? ????? ????? ????? ??? ??? ???? ???? ??? ??? ???? ???? ????? ????? c ??? ??? ???? ???? ??? ??? ???? ???? ???????? ???????? ???????? ????? ????? c ??? ??? ???? ???? ??? ??? ???? ???? ????? ????? c ??? ??? ???? ???? ??? ??? ???? ???? ????????????????????????????????? dynamic characteristics ??????????????????? ??????????????????? ??????????????????? current gain bandwidth (i c = 1 adc, v ce = 10 vdc, f = 1 mhz) ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ???? ??????????????????? ??????????????????? ??????????????????? ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ???? ??????????????????? ??????????????????? ????? ????? ??? ??? ???? ???? ??? ??? ???? ????
BUH100G http://onsemi.com 3 electrical characteristics (t c = 25 c unless otherwise noted) ??????????????????? ??????????????????? characteristic ????? ????? ??? ??? ???? ???? ??? ??? ???? ???? ????????????????????????????????? ????????????????????????????????? (d.c. 10%, pulse width = 40  s) ???????? ???????? ???????? ? on time ???????? ???????? ???????? ???????? ????? ????? ????? c @ t c = 125 c ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ???? ???????? ???????? ? off time ????? ????? c @ t c = 125 c ????? ????? ??? ??? ???? ???? ??? ??? ???? ????  s ???????? ???????? ???????? ? on time ???????? ???????? ???????? ???????? ???????? ????? ????? ????? c @ t c = 125 c ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ???? ???????? ???????? ???????? ? off time ????? ????? ????? c @ t c = 125 c ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ????  s ???????? ???????? ? on time ???????? ???????? ???????? ???????? ????? ????? c @ t c = 125 c ????? ????? ??? ??? ???? ???? ??? ??? ???? ???? ???????? ???????? ???????? ? off time ????? ????? ????? c @ t c = 125 c ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ????  s ???????? ???????? ? on time ???????? ???????? ???????? ???????? ????? ????? c @ t c = 125 c ????? ????? ??? ??? ???? ???? ??? ??? ???? ???? ???????? ???????? ???????? ? off time ????? ????? ????? c @ t c = 125 c ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ????  s ????????????????????????????????? ????????????????????????????????? switching characteristics: inductive load (v clamp = 300 v, v cc = 15 v, l = 200  h) ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? ????? ????? ????? c @ t c = 125 c ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ???? ???????? ???????? ????? ????? c @ t c = 125 c ????? ????? ??? ??? ???? ???? ??? ??? ???? ????  s ???????? ???????? ???????? ????? ????? ????? c @ t c = 125 c ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ???? ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? ????? ????? c @ t c = 125 c ????? ????? ??? ??? ???? ???? ??? ??? ???? ???? ???????? ???????? ???????? ????? ????? ????? c @ t c = 125 c ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ????  s ???????? ???????? ???????? ????? ????? ????? c @ t c = 125 c ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ???? ???????? ???????? ???????? ???????? ???????? ???????? ???????? ???????? ????? ????? c @ t c = 125 c ????? ????? ??? ??? ???? ???? ??? ??? ???? ???? ???????? ???????? ???????? ????? ????? ????? c @ t c = 125 c ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ????  s ???????? ???????? ???????? ????? ????? ????? c @ t c = 125 c ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ???? ???????? ???????? ???????? ???????? ???????? ???????? ???????? ????? ????? c @ t c = 125 c ????? ????? ??? ??? ???? ???? ??? ??? ???? ???? ???????? ???????? ???????? ????? ????? ????? c @ t c = 125 c ????? ????? ????? ??? ??? ??? ???? ???? ???? ??? ??? ??? ???? ???? ????  s ???????? ???????? ????? ????? c @ t c = 125 c ????? ????? ??? ??? ???? ???? ??? ??? ???? ????
BUH100G http://onsemi.com 4 typical static characteristics figure 1. dc current gain @ 1 volt 100 10 1 10 1 0.1 0.001 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = 25 c t j = -20 c v ce = 1 v figure 2. dc current gain @ 3 volt 100 10 1 10 1 0.1 0.001 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = -20 c v ce = 3 v 0.01 0.01 figure 3. dc current gain @ 5 volt 100 10 1 100 1 0.1 0.01 i c , collector current (amps) h fe , dc current gain t j = 125 c t j = -20 c v ce = 5 v 10 figure 4. collector ? emitter saturation voltage 10 1 0.01 10 1 0.1 0.001 i c , collector current (amps) t j = 125 c t j = 25 c t j = -20 c i c /i b = 5 v ce , voltage (volts) 0.1 figure 5. collector ? emitter saturation voltage 10 1 0.01 10 1 0.1 0.001 i c , collector current (amps) t j = 125 c t j = -20 c i c /i b = 10 v ce , voltage (volts) 0.1 0.01 figure 6. base ? emitter saturation region 1.5 1 0 10 1 0.01 0.001 i c , collector current (amps) v be , voltage (volts) t j = 125 c t j = 25 c t j = -20 c i c /i b = 5 0.5 0.1 0.01 t j = 25 c t j = 25 c t j = 25 c
BUH100G http://onsemi.com 5 typical static characteristics figure 7. base ? emitter saturation region 1.5 0.5 0 10 1 0.1 0.001 i c , collector current (amps) v be , voltage (volts) t j = 125 c t j = 25 c t j = -20 c 1 0.01 i c /i b = 10 figure 8. collector saturation region 2 1 0 10 1 0.1 0.01 i b , base current (a) v ce(sat) (i c = 1 a) v ce , voltage (volts) t j = 25 c 2 a 5 a 3 a 1.5 0.5 8 a 10 a 15 a figure 9. capacitance 10000 10 100 10 1 v r , reverse voltage (volts) c, capacitance (pf) 100 c ib t j = 25 c f (test) = 1 mhz 1000 c ob figure 10. resistive breakdown 900 700 400 100000 100 10 r be (  ) bvcer (volts) t j = 25 c bvcer @ 10 ma 800 600 500 bvcer(sus) @ 500 ma, 25 mh 10000 1000
BUH100G http://onsemi.com 6 t, time (s) typical switching characteristics figure 11. resistive switching time, t on 2500 1000 0 10 2 0 i c , collector current (amps) 4 t, time (ns) 1500 500 t j = 125 c t j = 25 c i b1 = i b2 v cc = 300 v pw = 40  s figure 12. resistive switch time, t off 10 6 0 10 6 0 i c , collector current (amps) figure 13. inductive storage time, t si 7 1 10 4 1 i c , collector current (amps) 5 3 8 4 2 7 t j = 125 c t j = 25 c i b1 = i b2 v cc = 15 v v z = 300 v l c = 200  h 2000 i c /i b = 5 figure 14. inductive storage time, t c & t fi @ i c /i b = 5 600 0 10 7 1 i c , collector current (amps) t, time (ns) 200 4 t j = 125 c t j = 25 c t c t fi 400 68 i c /i b = 10 i c /i b = 5 125 c 25 c 24 8 t j = 125 c t j = 25 c i b1 = i b2 v cc = 300 v pw = 20  s i c /i b = 10 i c /i b = 5 t, time (s) figure 13 bis. inductive storage time, t si 6 0 10 4 1 i c , collector current (amps) 5 2 7 t j = 125 c t j = 25 c i b1 = i b2 v cc = 15 v v z = 300 v l c = 200  h t, time (s) 4 3 1 i c /i b = 10 i b1 = i b2 v cc = 15 v v z = 300 v l c = 200  h figure 15. inductive storage time, t c & t fi @ i c /i b = 10 800 0 10 7 1 i c , collector current (amps) t, time (ns) 200 4 t j = 125 c t j = 25 c t c t fi 400 i b1 = i b2 v cc = 15 v v z = 300 v l c = 200  h 600
BUH100G http://onsemi.com 7 typical switching characteristics 4 0 10 4 2 h fe , forced gain 8 3 6 t j = 125 c t j = 25 c figure 16. inductive storage time 2 i b1 = i b2 v cc = 15 v v z = 300 v l c = 200  h figure 17. inductive fall time 200 0 10 3 h fe , forced gain 150 t fi , fall time (ns) 100 50 467 t j = 125 c t j = 25 c , storage time ( t si s) i c = 7.5 a i c = 5 a 589 i boff = i b2 v cc = 15 v v z = 300 v l c = 200  h figure 18. inductive crossover time, t c 800 300 100 h fe , forced gain 600 t c , crossover time (ns) 700 400 500 200 10 34 6 7 589 i b1 = i b2 v cc = 15 v v z = 300 v l c = 200  h t j = 125 c t j = 25 c 1 i c = 7.5 a i c = 5 a i c = 5 a i c = 7.5 a figure 19. dynamic saturation voltage measurements time v ce 0 v i b 90% i b 1  s 3  s dyn 1  s dyn 3  s figure 20. inductive switching measurements 10 4 0 8 2 0 time 6 8 6 2 4 9 7 5 3 1 13 5 7 i b i c v clamp t si t c t fi 90% i c 10% i c 90% i b1 10% v clamp
BUH100G http://onsemi.com 8 table 1. inductive load switching drive circuit v (br)ceo(sus) l = 10 mh r b2 = v cc = 20 v i c(pk) = 100 ma inductive switching l = 200  h r b2 = 0 v cc = 15 v r b1 selected for desired i b1 rbsoa l = 500  h r b2 = 0 v cc = 15 v r b1 selected for desired i b1 +15 v 1  f 150  3 w 100  3 w mpf930 +10 v 50  common -v off 500  f mpf930 mtp8p10 mur105 mje210 mtp12n10 mtp8p10 150  3 w 100  f i out a r b1 r b2 1  f i c peak v ce peak v ce i b i b 1 i b 2 typical thermal response figure 21. forward bias power derating 1 0 160 100 20 t c , case temperature ( c) 0.8 power derating factor 0.6 0.4 0.2 60 140 second breakdown derating 40 80 120 thermal derating there are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. safe operating area curves indicate i c ? v ce limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. the data of figure 22 is based on t c = 25 c; t j(pk) is variable depending on power level. second breakdown pulse limits are valid for duty cycles to 10% but must be derated when t c > 25 c. second breakdown limitations do not derate the same as thermal limitations. allowable current at the voltages shown on figure 22 may be found at any case temperature by using the appropriate curve on figure 21. t j(pk) may be calculated from the data in figure 24. at any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. for inductive loads, high voltage and current must be sustained simultaneously during turn ? off with the base to emitter junction reverse biased. the safe level is specified as a reverse biased safe operating area (figure 23). this rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. figure 22. forward bias safe operating area 100 0.01 1000 10 v ce , collector-emitter voltage (volts) 100 1 0.1 i c , co lle c t o r c urrent (amp s ) dc 5 ms 1 ms 10  s 1  s extended soa 10
BUH100G http://onsemi.com 9 figure 23. reverse bias safe operating area 12 6 0 800 200 v ce , collector-emitter voltage (volts) 500 i c , collector current (amps) 8 2 gain 5 0 v -1.5 v -5 v t c 125 c l c = 2 mh 300 400 700 600 10 4 figure 24. typical thermal response (z  jc (t)) for buh100 1 0.01 10 0.1 0.01 t, time (ms) 0.1 1 100 1000 r(t), transient thermal resistance (normalized) r  jc (t) = r(t) r  jc r  jc = 1.25 c/w max d curves apply for power pulse train shown read time at t 1 t j(pk) - t c = p (pk) r  jc (t) p (pk) t 1 t 2 duty cycle, d = t 1 /t 2 0.05 single pulse 0.5 0.2 0.1 0.02
BUH100G http://onsemi.com 10 package dimensions to ? 220ab case 221a ? 09 issue af style 1: pin 1. base 2. collector 3. emitter 4. collector notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: inch. 3. dimension z defines a zone where all body and lead irregularities are allowed. dim min max min max millimeters inches a 0.570 0.620 14.48 15.75 b 0.380 0.405 9.66 10.28 c 0.160 0.190 4.07 4.82 d 0.025 0.035 0.64 0.88 f 0.142 0.161 3.61 4.09 g 0.095 0.105 2.42 2.66 h 0.110 0.155 2.80 3.93 j 0.014 0.025 0.36 0.64 k 0.500 0.562 12.70 14.27 l 0.045 0.060 1.15 1.52 n 0.190 0.210 4.83 5.33 q 0.100 0.120 2.54 3.04 r 0.080 0.110 2.04 2.79 s 0.045 0.055 1.15 1.39 t 0.235 0.255 5.97 6.47 u 0.000 0.050 0.00 1.27 v 0.045 --- 1.15 --- z --- 0.080 --- 2.04 b q h z l v g n a k f 123 4 d seating plane ? t ? c s t u r j on semiconductor and are registered trademarks of semiconductor components industries, llc (scillc). scillc reserves the right to mak e changes without further notice to any products herein. scillc makes no warranty, representation or guarantee regarding the suitability of its products for an y particular purpose, nor does scillc assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including wi thout limitation special, consequential or incidental damages. ?typical? parameters which may be provided in scillc data sheets and/or specifications can and do vary in different application s and actual performance may vary over time. all operating parameters, including ?typicals? must be validated for each customer application by customer?s technical experts. scillc does not convey any license under its patent rights nor the rights of others. scillc products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the scillc product could create a sit uation where personal injury or death may occur. should buyer purchase or use scillc products for any such unintended or unauthorized application, buyer shall indemnify and hold scillc and its of ficers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, direct ly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that scillc was negligent regarding the design or manufacture of the part. scillc is an equal opportunity/affirmative action employer. this literature is subject to all applicable copyright laws and is not for resale in any manner. buh100/d switchmode is a trademark of semiconductor components industries, llc. publication ordering information n. american technical support : 800 ? 282 ? 9855 toll free usa/canada europe, middle east and africa technical support: phone: 421 33 790 2910 japan customer focus center phone: 81 ? 3 ? 5773 ? 3850 literature fulfillment : literature distribution center for on semiconductor p.o. box 5163, denver, colorado 80217 usa phone : 303 ? 675 ? 2175 or 800 ? 344 ? 3860 toll free usa/canada fax : 303 ? 675 ? 2176 or 800 ? 344 ? 3867 toll free usa/canada email : orderlit@onsemi.com on semiconductor website : www.onsemi.com order literature : http://www.onsemi.com/orderlit for additional information, please contact your local sales representative


▲Up To Search▲   

 
Price & Availability of BUH100G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X